Catalytic epoxidation of propene with H₂O-O₂ reactants on Au/TiO₂ ## Manuel Ojeda and Enrique Iglesia* Au/TiO₂ catalysts form hydroperoxy species from H₂O-O₂ mixtures at near-ambient temperatures. These species can be used in the selective epoxidation of propene to propylene oxide. Propylene oxide (PO) is a useful intermediate in the synthesis of polyurethane, organic intermediates and solvents (e.g. propylene glycol). PO is currently produced by 10 chlorohydrin or hydroperoxide processes, which require toxic, corrosive, or explosive reagents, and form significant amounts of waste by-products. Hydrogen peroxide has been used as an oxidant to replace alkyl hydroperoxides in PO synthesis. Small Au clusters (<5 nm) dispersed on Ti-containing oxides, such as TiO₂ and TS-1, catalyze propene epoxidation via the in situ formation of hydroperoxy species (*OOH) from H₂-O₂ mixtures. 4-7 Mechanistic studies have suggested that hydroperoxy species form on Au clusters via H2 reactions 20 with O2; these species then react with propene on adjacent Ti centers to form PO with high selectivity. 8,9 This process uses H₂ as a sacrificial reductant, which predominantly converts, however, to H₂O via unproductive side reactions, and leads to low H₂ utilization efficiencies (30-40%, defined as PO formed 25 per H₂ consumed) and unfavorable economics.² H₂O₂ was recently detected during CO oxidation with aqueous systems and Au catalysts¹⁰; these molecules or their adsorbed precursors may therefore form also from O₂/H₂O mixtures. Our recent kinetic and isotopic data indicate that *OOH 30 species formed from H₂O/O₂ account for the strong effect of H₂O on the rate of CO oxidation on Au catalysts. 11 We provide here evidence for the formation of *OOH species from H₂O and O₂ by detecting and reporting for the first time the formation of PO via propene reactions using H₂O/O₂ 35 mixtures, which appear to act as precursors for peroxide species. H₂O/O₂ mixtures form PO with selectivities as high as 80% on Au/TiO₂ at near-ambient temperatures (300-350 Au/TiO₂ (1.56 wt.% Au, 3.3 ± 0.7 nm mean cluster diameter) was prepared by deposition-precipitation and provided by the World Gold Council. Au/Al₂O₃ (0.61 wt.%, 3.5 ± 1.2 nm) was also prepared by deposition-precipitation methods. HAuCl₄·xH₂O (0.24 g, Aldrich, 99.999%) was dissolved in deionized H₂O (80 cm³) at 353 K. The support (5 g, γ-Al₂O₃, Alcoa) was treated in air at 923 K for 5 h and suspended in deonized H₂O (120 cm³) at 353 K. Au was deposited onto Al₂O₃ at 353 K and a pH of 7 (adjusted with 0.5 M NaOH) by mixing the two solutions with stirring for 1 h. Solids were filtered and washed twice with deionized water at ambient temperature and then once at slightly higher temperatures (323 K), and held in ambient air for 24 h. TiO₂ was obtained from Degussa (P25, anatase/rutile ~4). Propene (4 kPa, Praxair, UHP) epoxidation rates and selectivity were measured using O_2 (4 kPa, Praxair, UHP) at 350 K in the presence and absence of H_2 (4 kPa, 99.999%, Praxair) or H_2O (0-12 kPa) using a tubular flow reactor with plug-flow hydrodynamics (He was used as a balance). Au/Ti O_2 was used as-received, while Au/Al_2O_3 was treated using protocols reported previously. Reactant and product concentrations were measured by gas chromatography (Agilent 6890GC) using a Porapak Q packed-column (80–100 mesh, 1.82 m \times 3.18 mm) and a HP-1 capillary column (50 m x 0.32 mm; 1.05 μ m film) with thermal conductivity and flame ionization detection, respectively. Figure 1 shows propylene oxide formation rates (metaltime yield, per Au atom) at 350 K as a function of time-onstream on Au/TiO2 when H2-O2 or H2O-O2 were used as the oxidant. Propene epoxidation rates and selectivities (~95%) and catalyst deactivation rates (0.76 h⁻¹ first-order 70 deactivation rate constant) in H2-O2 mixtures are similar to those previously reported (Supplementary Information†). Strongly-adsorbed PO-derived species have been claimed to cause this deactivation.¹³ PO selectivities remained nearly unchanged as deactivation occurred and conversion decreased 75 (Figure 2). These data, taken together with the intermediate selectivites observed as data are extrapolated to zero conversion, indicate that both PO and acetone form as primary products and that deactivation occurs by blocking of sites without concomitant changes in the relative rates of PO and 80 acetone synthesis. **Fig. 1.** Rate of propylene oxide formation (expressed as metal-time yield) from C₃H₆ (4 kPa) and O₂ (4 kPa) at 350 K from with Au/TiO₂ as a function of time-on-stream using H₂ or H₂O as co-reactants: 4 kPa H₂ (•); 1 kPa H₂O (▲), 2 kPa 85 H₂O (■); 6 kPa H₂O (▼); 12 kPa H₂O (•). Figures 1 and 2 provide evidence for the previously unrecognized ability of Au/TiO₂ to catalyze propene epoxidation with O₂ and H₂O (instead of H₂) as co-reactant. The synthesis of PO during water electrolysis, probably via *in* 90 situ generation of H₂O₂ or OOH species, has been reported. ¹⁴ In contrast, catalytic epoxidation of propene or other substrates with H₂O-O₂ reactants have not been reported. PO synthesis rates with H₂O-O₂ reactants are significantly lower than with H₂-O₂, but the former avoid the significant loses of 5 costly H₂ co-reactants via its unproductive pathways to form H₂O instead of OOH species (hydrogen efficiency ~29 %). Both H_2O and O_2 are needed to form active hydroperoxy species required for PO synthesis. Neither C_3H_6 - O_2 nor C_3H_6 - H_2O reactants formed detectable products on Au/TiO₂ at 350 K. PO synthesis also requires the presence of both Au and Ti sites. We did not detect PO from C_3H_6 - O_2 - H_2 or C_3H_6 - O_2 - H_2O reactants on either TiO₂ or Au/Al₂O₃ catalysts. Au and Ti sites must reside in reasonable proximity, since PO was not detected when C_3H_6 - O_2 - H_2 or C_3H_6 - O_2 - H_2O reactants were so contacted with a physical mixture Au/Al₂O₃ and TiO₂ (mass ratio 1:1, 0.125-0.250 mm aggregates). The rate of PO formation (extrapolated to zero time-on-stream) increased slightly from 0.5 to 0.7 mol h^{-1} (g-at Au)⁻¹ when the H_2O partial pressure in equimolecular C_3H_6 - O_2 mixtures (4 kPa) increased from 1 to 2 kPa (Figure 1); higher H_2O pressures (up to 12 kPa), however, did not influence reaction rates. The PO synthesis rates reported here are inconsistent with the use of gaseous H₂O₂ reactants as intermediates and 25 indicate that PO is formed instead from propene and adsorbed hydroperoxide species. H₂O₂ pressures in equilibrium with O_2/H_2O (4 kPa/12 kPa) are $7x10^{-18}$ kPa ($K_{eq} = 1.48x10^{-19}$ kPa ^{1/2}; 350 K). At this pressure, the frequency of H₂O₂ collisons with Au clusters (Supplementary Information†) would be 30 5x10⁻⁶ mol h⁻¹ (g-at Au)⁻¹, a value much lower than required to maintain the observed epoxidation rates (~0.7 mol h⁻¹ (g-at Au)⁻¹), consistent with an inadequate supply of $H_2O_2(g)$ as the reactive species and with PO synthesis via propene reactions with hydroperoxy surface species instead of H₂O₂. The 35 involvement of bound hydroperoxy species requires, in turn, atomic proximity between the sites that form *OOH (Au) and those that consume it via reactions with propene (Ti), possibly at Au-TiO₂ interfaces, as proposed earlier ⁴ and consistent with the absence of epoxidation turnovers on physical 40 mixtures of Au/Al₂O₃ and TiO₂. Density functional theory (DFT) ¹⁵ suggests that OOH species can form from H₂O and O₂ on Au₈ clusters to form [O₂·H₂O] complexes in which protons are shared between H₂O and O₂ to ultimately form adsorbed (HOO*) complexes. We propose that these species can act as effective oxidants in reactions of CO to CO₂ ¹¹ and, in the present study, for propene epoxidation to PO. C₃H₆-O₂-H₂O reactants form predominantly PO and acetone on Au/TiO₂ at 350 K. Figure 2 shows PO selectivities at various H₂O inlet pressures. PO selectivities increased so slightly from 65 to 70% as H₂O pressure increased from 1 to 2 kPa, but then decreased markedly (70 to 20%) at higher H₂O pressures (2-12 kPa). with a concurrent increase in acetone selectivity. The selectivities to PO and acetone depend only weakly on propene conversion, suggesting that both can form via primary pathways. The strong effects of H₂O pressure on PO selectivity and the slight increase in acetone selectivity with increasing conversion show, however, that secondary reactions of PO to form acetone are favored by H₂O. PO synthesis rates, however, are independent of H₂O pressure 60 above 2 kPa, while acetone synthesis rates increased monotonically with H₂O pressure. **Fig. 2.** Selectivity (carbon basis) to propylene oxide obtained with Au/TiO₂ at 350 K at different propene conversion levels changed by catalyst deactivation (4 kPa C₃H₆; 4 kPa O₂; 4 kPa H₂; 1-12 kPa H₂O). The data in Figures 1 and 2, taken together, suggest that maximum PO yields are achieved at intermediate H_2O pressures. While rates are lower than with H_2 as co-reactants, the use of H_2O avoids the need for H_2 and its predominant loss via unproductive combustion side reactions. In summary, we provide evidence here for the unprecedented ability of Au/TiO₂ catalysts to form hydroperoxy surface species from O₂/H₂O mixtures and for their involvement in oxidation reactions, such as selective conversion of propene to PO at near-ambient temperatures (350 K). These pathways provide an attractive strategy to replace H₂ by H₂O in propene epoxidation reactions. We expect that these hydroperoxy intermediates will prove useful for other epoxidation reaction upon more rigorous evaluation and optimization. M. Ojeda acknowledges financial support from the European Union (Marie Curie Actions). This work was also supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231. ## Notes and references - 90 Deparment of Chemical Engineering, University of California, Berkeley, CA 94720, USA. Fax: +1 510 642 477;, Tel: +1 510 642 9673; E-mail: iglesia@berkeley.edu - \dagger Electronic Supplementary Information (ESI) available: propene epoxidation with Au/TiO $_2$ catalysts and frequency of H_2O_2 collisions with $_{95}$ Au clusters. See DOI: 10.1039/b000000x/ - 1. G.C. Bond, C. Louis and D.T. Thompson, *Catalysis by gold*; Imperial College Press: London, 2006. - T.A. Nijhuis, M. Makkee, J.A. Moulijn and B.M. Weckhuysen, *Ind.* 100 Eng. Chem. Res., 2006, 45, 3447. - 3. A. Tullo, Chem. & Eng. News, 2004, 82, 15. - 4. T. Hayashi, K. Tanaka and M. Haruta, J. Catal., 1998, 178, 566. - 5. J.J. Bravo-Suarez, J. Lu, C.G. Dallos, T. Fujitani and S.T. Oyama, *J. Phys. Chem. C*, 2007, **111**, 17247. - 6. T.A.R. Nijhuis, T. Visser and B.M. Weckhuysen, *Angew. Chem. Int.* 5 Ed., 2005, **44**, 1115. - 7. G.J. Hutchings, Chem. Commun., 2008, 10, 1148. - 8. D.G. Barton and S.G. Podkolzin, J. Phys. Chem. B, 2005, 109, 2262. - 9. B. Chowdhury, J.J. Bravo-Suarez, N. Nimura, J. Lu, K.K. Bando, S. Tsubota and M. Haruta, *J. Phys. Chem. B*, 2006, **110**, 22995. - 10 10. W.C. Ketchie, M. Murayama and R.J. Davis, *Topics Catal.*, 2007, 44, 307. - 11. M. Ojeda, B.Z. Zhang and E. Iglesia, in preparation. - 12. C.K. Costello, J. Guzman, J.H. Yang, Y.M. Wang, M.C. Kung, B.C. Gates and H.H. Kung, *J. Phys. Chem. B*, 2004, **108**, 12529. - 15 13. J. Lu, X. Zhang, J.J. Bravo-Suarez, S. Tsubota, J. Gaudet and S.T. Oyama, *Catal. Today*, 2007, **123**, 189. - 14. K. Otsuka, T. Ushiyama, I. Yamanaka and K. Ebitani, *J. Catal.*, 1995, **157**, 450. - 15. A. Bongiorno and U. Landman, Phys. Rev. Lett., 2005, 95, 106102. 20